### Technical data

#### Electrical data
- Nominal voltage AC/DC 24 V
- Nominal voltage range AC 19.2 ... 28.8 V / DC 21.6 ... 28.8 V
- Power consumption Operation 5.5 W @ nominal force 10 VA
- Connection Cable 1 m, 5 x 0.75 mm²
- Parallel operation Yes (note performance data for supply!)

#### Functional data
- Actuating force 800 N
- Control signal Y
- Operating range DC 0 ... 10 V, input impedance 100 kΩ
- Position feedback (measuring voltage U) DC 0.5 ... 10 V, max. 0.5 mA
- Position accuracy ±5%
- Manual override With hexagon socket screw key, temporary
- Nominal stroke 20 mm
- Running time
  - Motor 45 s
  - Spring return 30 s
- Emergency actuating time <1.5 s/mm
- Sound power level
  - Motor ≤35 dB (A)
  - Spring return ≤50 dB (A)
- Position indication mechanical 10 … 20 mm stroke

#### Safety
- Protection class III Safety extra-low voltage
- Degree of protection IP54
- EMC CE according to 2004/108/EC
- Software Class A (EN 60730-1)
- Mode of operation Type 1 (EN 60730-1)
- Rated impulse voltage 0.33 kV (EN 60730-1)
- Control pollution degree 3 (EN 60730-1)
- Ambient temperature 0 ... +50°C
- Non-operating temperature –40 ... +80°C
- Ambient humidity 95% r.h., non-condensating (EN 60730-1)
- Maintenance Maintenance-free

#### Dimensions / Weight
- Dimensions See «Dimensions» on page 5
- Weight approx. 1.8 kg with bracket UNV-002 (without valve)

### Safety notes

- The actuator has been designed for use in stationary heating, ventilation and air conditioning systems and is not allowed to be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.
- It may only be installed by suitably trained personnel. Any legal regulations or regulations issued by authorities must be observed during assembly.
- The device does not contain any parts that can be replaced or repaired by the user.
- The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

---

Products no longer available
Product features

Mode of operation
The actuator is activated with a standard modulating signal DC 0 ... 10 V. When the actuator is deenergized, the actuator spindle of the NVF.. type retracts and that of the NVF..-E type extends.

Parameterisation
Control signal, operating range, feedback, running time and other functions can be adjusted with PC-Tool.

Installation on Belimo valves
If a combination of actuator and BELIMO globe valve is ordered, then one UNV-002 bracket is included in the scope of delivery.
If an actuator is ordered without Belimo globe valve, then the UNV-002 bracket (see «Accessories») must also be ordered.

Installation on third-party valves
Prior to installation on a third-party valve, a suitable bracket UNV-.. (see «Accessories») must first be screwed to the actuator. The adapter set integrated therein is comprised of a valve neck adapter and a valve stem adapter. The valve neck adapter, together with the clamping strap on the bracket, makes possible simple attachment on the neck of the valve. The valve stem adapter is mounted on the valve stem. The linear spindle can be coupled semi-automatically to the valve stem with the valve stem coupling.

The actuator can be rotated by 360° on the valve neck.

Manual override
The stroke can be adjusted in a voltage-free state by using a hexagon socket screw key (5 mm), which is plugged into the actuator at the top. If the hexagon socket screw key is turned in a clockwise direction, then the actuator spindle will extend from the actuator housing (pushing) and maintain the position until a nominal voltage is applied (the controller has first priority).

Functional reliability
The actuator is protected against short circuits, polarity reversal and overloading.

Position indication
The stroke is indicated mechanically on the bracket. The stroke range adjusts itself automatically.

Combination valve/actuator
Refer to the valve documentation for suitable valves, their permitted media temperatures and closing pressures.

Accessories

Mechanical accessories
Brackets and adapter sets UNV-.. see www.belimo.eu/retrofit

Electrical installation

Wiring diagram

Notes
- Connect via safety isolation transformer.
- Parallel connection of other actuators possible.
Note performance data for supply.

Cable colours:
1 = black
2 = red
3 = white
4 = white
5 = white
Modulating linear actuator with emergency function for globe valves, AC/DC 24 V, 800 N, running time 45 s

**Alignment of the operating elements**

The terminals for the cable connection, the operating elements S1, S2, S3 and the H1 LED indicator are located under the cover of the actuator.

By setting slide switch S3 or pressing pushbuttons S1 and S2, it is possible to configure the actuator very simply on site to suit actual requirements.

**S3.1 Direction of stroke**

**S3.2 Valve closing point**

**Functional description**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>The valve effects full stroke with maximum running time and checks the adapted stroke to determine whether the two end-points (H=0% and H=100%) are reached.</td>
<td>Press S1</td>
</tr>
<tr>
<td>Init (Adapt)</td>
<td>The possible stroke effected (between the two mechanical end stops of the valve) is detected a 100% stroke and stored in the microcontroller. The control signal and the running time are then matched to this 100% stroke.</td>
<td>Press S2</td>
</tr>
<tr>
<td>Direction of stroke</td>
<td>Direction of stroke relative to the control signal</td>
<td>S3.1</td>
</tr>
<tr>
<td>direct</td>
<td>0% control signal corresponds to 0% position feedback. (The actuator spindle is retracted or extended according to the selected closing point.)</td>
<td>OFF</td>
</tr>
<tr>
<td>inverted</td>
<td>0% control signal corresponds to 100% position feedback. (The actuator spindle is extended or retracted according to the selected closing point.)</td>
<td>ON</td>
</tr>
<tr>
<td>Valve closing point</td>
<td>Closing point with actuator spindle retracted or extended.</td>
<td>S3.2</td>
</tr>
<tr>
<td>up</td>
<td>The actuator spindle is retracted into the actuator and the valve stem is extended from the fitting. The position feedback indicates 0% if the stroke direction is «direct».</td>
<td>OFF ▲</td>
</tr>
<tr>
<td>down</td>
<td>The actuator spindle is extended from the actuator and the valve stem is retracted into the fitting. The position feedback indicates 0% if the stroke direction is «direct».</td>
<td>ON ▼</td>
</tr>
</tbody>
</table>

1) Factory setting
2) Standard setting for valves H4..B, H5..B, H6..N, H6..R, H7..N, H7..R, H7..X..-S2 and H7..Y..-S2
3) Standard setting for valves H6..S, H6..SP and H6..X..-S(P)2

**LED display H1**

The LED display is two-coloured (red/green) and shows the current status of the actuator.

<table>
<thead>
<tr>
<th>LED display</th>
<th>Description</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green steady light</td>
<td>Actuator working properly</td>
<td></td>
</tr>
<tr>
<td>Green flashing light</td>
<td>Test run or adaptation with synchronisation in progress</td>
<td></td>
</tr>
<tr>
<td>Red steady light</td>
<td>A fault is present</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible causes of malfunctions:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Actuator installed incorrectly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Valve stem blocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– No valve installed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The adaptation must be repeated by pressing pushbutton S2 after the malfunction has been eliminated.</td>
<td></td>
</tr>
<tr>
<td>Red flashing light</td>
<td>After every voltage interruption (&gt;2 s). The valve is automatically synchronized at the selected closing point the next time it closes, and the LED indicator changes from a red flashing light to a green steady light.</td>
<td></td>
</tr>
<tr>
<td>Alternating red/green flashing light</td>
<td>Addressing via the control system and operation of the adaptation pushbutton S2 in progress</td>
<td></td>
</tr>
</tbody>
</table>
NVFY24-MFT2(-E) Modulating linear actuator with emergency function for globe valves, AC/DC 24 V, 800 N, running time 45 s

Functions (Continued)

Modulating control

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Direction of stroke</th>
<th>Closing point Value</th>
<th>Signal direct</th>
<th>Signal inverted</th>
<th>Closing point up</th>
<th>Control signal min. (e.g. Y = 0 V)</th>
<th>Control signal max. (e.g. Y = 10 V)</th>
<th>Measuring signal min. (e.g. U = 0 V)</th>
<th>Measuring signal max. (e.g. U = 10 V)</th>
<th>Actuator spindle moves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>OFF</td>
<td>OFF</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>OFF</td>
<td>ON</td>
<td>X</td>
<td>X</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▲</td>
<td>ON 1)</td>
<td>OFF</td>
<td>X</td>
<td>X</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>ON 1)</td>
<td>ON</td>
<td>X</td>
<td>X</td>
<td>ON</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) If the controller generates a negative signal (<0.15 V), slide switch S3.1 must not be set to «ON», if the operating range of the actuator is set to 0 … 10 V (Exception: start point in the parameterized operating range of 0.5 V).

The linear actuator must be accordingly parameterized and equipped with a 3-wire connector for 4-point applications.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Direction of stroke</th>
<th>Closing point Value</th>
<th>Signal direct</th>
<th>Signal inverted</th>
<th>Closing point up</th>
<th>Relay contact (Y1)</th>
<th>Relay contact (Y2)</th>
<th>Measuring signal min. (e.g. U = 0 V)</th>
<th>Measuring signal max. (e.g. U = 10 V)</th>
<th>Actuator spindle moves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>OFF</td>
<td>OFF</td>
<td>0</td>
<td>0</td>
<td>1)</td>
<td>1)</td>
<td>stops</td>
<td>stops</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>2)</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▲</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>2)</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>2)</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▲</td>
<td>ON</td>
<td>OFF</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>2)</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>ON</td>
<td>ON</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>2)</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Measuring signal U according to position
2) If relay contact a or b is in switch position 1 for longer than the running time (45 s)

Override control 100%

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Direction of stroke</th>
<th>Closing point Value</th>
<th>Signal direct</th>
<th>Signal inverted</th>
<th>Closing point up</th>
<th>Control signal min. (e.g. Y = 0 V)</th>
<th>Control signal max. (e.g. Y = 10 V)</th>
<th>Measuring signal min. (e.g. U = 0 V)</th>
<th>Measuring signal max. (e.g. U = 10 V)</th>
<th>Actuator spindle moves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▲</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▼</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A typical use for 100% override control is in a frost protection circuit. Whether or not the frost thermostat has to interrupt the signal conductor to the controller «d» depends on the make of controller being used (not necessary, if the signal output at the controller is short circuit proof and protected against polarity reversal).
Functions (Continued)

Emergency control function

The actuator spindle moves to the end stop if the power supply is interrupted. In the case of the NVF.. type, the actuator spindle retracts into the actuator housing (pulling). In the case of the NVF..-E type, the actuator spindle extends from the actuator housing (pushing). The valve has either an NO (open when deenergized) or NC (closed when deenergized) function depending on its design (closing point up or down).

Products no longer available
Products no longer available